Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Efficient and Data Agnostic Image Classification Training Pipeline for Embedded Systems (2108.07049v1)

Published 16 Aug 2021 in cs.CV

Abstract: Nowadays deep learning-based methods have achieved a remarkable progress at the image classification task among a wide range of commonly used datasets (ImageNet, CIFAR, SVHN, Caltech 101, SUN397, etc.). SOTA performance on each of the mentioned datasets is obtained by careful tuning of the model architecture and training tricks according to the properties of the target data. Although this approach allows setting academic records, it is unrealistic that an average data scientist would have enough resources to build a sophisticated training pipeline for every image classification task he meets in practice. This work is focusing on reviewing the latest augmentation and regularization methods for the image classification and exploring ways to automatically choose some of the most important hyperparameters: total number of epochs, initial learning rate value and it's schedule. Having a training procedure equipped with a lightweight modern CNN architecture (like bileNetV3 or EfficientNet), sufficient level of regularization and adaptive to data learning rate schedule, we can achieve a reasonable performance on a variety of downstream image classification tasks without manual tuning of parameters to each particular task. Resulting models are computationally efficient and can be deployed to CPU using the OpenVINO toolkit. Source code is available as a part of the OpenVINO Training Extensions (https://github.com/openvinotoolkit/training_extensions).

Citations (2)

Summary

We haven't generated a summary for this paper yet.