Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepMIM: Deep Supervision for Masked Image Modeling (2303.08817v2)

Published 15 Mar 2023 in cs.CV

Abstract: Deep supervision, which involves extra supervisions to the intermediate features of a neural network, was widely used in image classification in the early deep learning era since it significantly reduces the training difficulty and eases the optimization like avoiding gradient vanish over the vanilla training. Nevertheless, with the emergence of normalization techniques and residual connection, deep supervision in image classification was gradually phased out. In this paper, we revisit deep supervision for masked image modeling (MIM) that pre-trains a Vision Transformer (ViT) via a mask-and-predict scheme. Experimentally, we find that deep supervision drives the shallower layers to learn more meaningful representations, accelerates model convergence, and expands attention diversities. Our approach, called DeepMIM, significantly boosts the representation capability of each layer. In addition, DeepMIM is compatible with many MIM models across a range of reconstruction targets. For instance, using ViT-B, DeepMIM on MAE achieves 84.2 top-1 accuracy on ImageNet, outperforming MAE by +0.6. By combining DeepMIM with a stronger tokenizer CLIP, our model achieves state-of-the-art performance on various downstream tasks, including image classification (85.6 top-1 accuracy on ImageNet-1K, outperforming MAE-CLIP by +0.8), object detection (52.8 APbox on COCO) and semantic segmentation (53.1 mIoU on ADE20K). Code and models are available at https://github.com/OliverRensu/DeepMIM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sucheng Ren (33 papers)
  2. Fangyun Wei (53 papers)
  3. Samuel Albanie (81 papers)
  4. Zheng Zhang (486 papers)
  5. Han Hu (196 papers)
Citations (17)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets