Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Age-driven Joint Sampling and Non-slot Based Scheduling for Industrial Internet of Things (2205.04092v1)

Published 9 May 2022 in cs.IT and math.IT

Abstract: Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors. Quantifying the data freshness through age of information (AoI), in this paper, we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information (MAoI) among sensors with the constraints of average energy cost and finite queue stability. To overcome the intractability involving high couplings of such a complex stochastic process, we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process (CMDP) into an unconstrained Markov decision process (MDP) by the Lagrangian method. With the infinite-time average energy and AoI expression expended as the BeLLMan equation, the single-sensor time-average AoI optimization problem can be approached through the steady-state distribution probability. Further, we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario. The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.