Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scheduling Policies for AoI Minimization with Timely Throughput Constraints

Published 10 Sep 2021 in cs.NI, cs.IT, and math.IT | (2109.04784v3)

Abstract: In 5G and beyond communication systems, the notion of latency gets great momentum in wireless connectivity as a metric for serving real-time communications requirements. However, in many applications, research has pointed out that latency could be inefficient to handle applications with data freshness requirements. Recently, Age of Information (AoI) metric, which can capture the freshness of the data, has attracted a lot of attention. In this work, we consider mixed traffic with time-sensitive users; a deadline-constrained user, and an AoI-oriented user. To develop an efficient scheduling policy, we cast a novel optimization problem formulation for minimizing the average AoI while satisfying the timely throughput constraints. The formulated problem is cast as a Constrained Markov Decision Process (CMDP). We relax the constrained problem to an unconstrained Markov Decision Process (MDP) problem by utilizing the Lyapunov optimization theory and it can be proved that it is solved per frame by applying backward dynamic programming algorithms with optimality guarantees. In addition, we provide a low-complexity algorithm guaranteeing that the timely-throughput constraint is satisfied. Simulation results show that the timely throughput constraints are satisfied while minimizing the average AoI. Simulation results show the convergence of the algorithms for different values of the weighted factor and the trade-off between the AoI and the timely throughput.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.