Papers
Topics
Authors
Recent
2000 character limit reached

A data-driven approach for the closure of RANS models by the divergence of the Reynolds Stress Tensor (2203.16944v3)

Published 31 Mar 2022 in physics.flu-dyn, cs.LG, cs.NA, and math.NA

Abstract: In the present paper a new data-driven model is proposed to close and increase accuracy of RANS equations. The divergence of the Reynolds Stress Tensor (RST) is obtained through a Neural Network (NN) whose architecture and input choice guarantee both Galilean and coordinates-frame rotation. The former derives from the input choice of the NN while the latter from the expansion of the divergence of the RST into a vector basis. This approach has been widely used for data-driven models for the anisotropic RST or the RST discrepancies and it is here proposed for the divergence of the RST. Hence, a constitutive relation of the divergence of the RST from mean quantities is proposed to obtain such expansion. Moreover, once the proposed data-driven approach is trained, there is no need to run any classic turbulence model to close the equations. The well-known tests of flow in a square duct and over periodic hills are used to show advantages of the present method compared to standard turbulence models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.