Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow (2111.00328v2)

Published 30 Oct 2021 in physics.flu-dyn and cs.LG

Abstract: The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.

Citations (2)

Summary

We haven't generated a summary for this paper yet.