Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning to advance the Eigenspace Perturbation Method for Turbulence Model Uncertainty Quantification (2202.12378v2)

Published 11 Feb 2022 in cs.LG and cs.CE

Abstract: The Reynolds Averaged Navier Stokes (RANS) models are the most common form of model in turbulence simulations. They are used to calculate Reynolds stress tensor and give robust results for engineering flows. But RANS model predictions have large error and uncertainty. In past, there has been some work towards using data-driven methods to increase their accuracy. In this work we outline a machine learning approach to aid the use of the Eigenspace Perturbation Method to predict the uncertainty in the turbulence model prediction. We use a trained neural network to predict the discrepancy in the shape of the RANS predicted Reynolds stress ellipsoid. We apply the model to a number of turbulent flows and demonstrate how the approach correctly identifies the regions in which modeling errors occur when compared to direct numerical simulation (DNS), large eddy simulation (LES) or experimental results from previous works.

Summary

We haven't generated a summary for this paper yet.