Papers
Topics
Authors
Recent
2000 character limit reached

Privacy Leakage of Adversarial Training Models in Federated Learning Systems (2202.10546v1)

Published 21 Feb 2022 in cs.LG, cs.CR, and cs.CV

Abstract: Adversarial Training (AT) is crucial for obtaining deep neural networks that are robust to adversarial attacks, yet recent works found that it could also make models more vulnerable to privacy attacks. In this work, we further reveal this unsettling property of AT by designing a novel privacy attack that is practically applicable to the privacy-sensitive Federated Learning (FL) systems. Using our method, the attacker can exploit AT models in the FL system to accurately reconstruct users' private training images even when the training batch size is large. Code is available at https://github.com/zjysteven/PrivayAttack_AT_FL.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.