Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Novel Attribute Reconstruction Attack in Federated Learning

Published 16 Aug 2021 in cs.CR and cs.LG | (2108.06910v1)

Abstract: Federated learning (FL) emerged as a promising learning paradigm to enable a multitude of participants to construct a joint ML model without exposing their private training data. Existing FL designs have been shown to exhibit vulnerabilities which can be exploited by adversaries both within and outside of the system to compromise data privacy. However, most current works conduct attacks by leveraging gradients on a small batch of data, which is less practical in FL. In this work, we consider a more practical and interesting scenario in which participants share their epoch-averaged gradients (share gradients after at least 1 epoch of local training) rather than per-example or small batch-averaged gradients as in previous works. We perform the first systematic evaluation of attribute reconstruction attack (ARA) launched by the malicious server in the FL system, and empirically demonstrate that the shared epoch-averaged local model gradients can reveal sensitive attributes of local training data of any victim participant. To achieve this goal, we develop a more effective and efficient gradient matching based method called cos-matching to reconstruct the training data attributes. We evaluate our attacks on a variety of real-world datasets, scenarios, assumptions. Our experiments show that our proposed method achieves better attribute attack performance than most existing baselines.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.