Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robust Federated Learning via Logits Calibration on Non-IID Data (2403.02803v1)

Published 5 Mar 2024 in cs.CV

Abstract: Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks. However, recent studies have shown that FL is vulnerable to adversarial examples (AEs), leading to a significant drop in its performance. Meanwhile, the non-independent and identically distributed (non-IID) challenge of data distribution between edge devices can further degrade the performance of models. Consequently, both AEs and non-IID pose challenges to deploying robust learning models at the edge. In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks, which can be termed as federated adversarial training (FAT). Moreover, we address the non-IID challenge by implementing a simple yet effective logits calibration strategy under the FAT framework, which can enhance the robustness of models when subjected to adversarial attacks. Specifically, we employ a direct strategy to adjust the logits output by assigning higher weights to classes with small samples during training. This approach effectively tackles the class imbalance in the training data, with the goal of mitigating biases between local and global models. Experimental results on three dataset benchmarks, MNIST, Fashion-MNIST, and CIFAR-10 show that our strategy achieves competitive results in natural and robust accuracy compared to several baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. X. Wang, J. Li, Z. Ning, Q. Song, L. Guo, S. Guo, and M. S. Obaidat, “Wireless powered mobile edge computing networks: A survey,” ACM Computing Surveys, 2023.
  2. A. Adhikary, M. S. Munir, A. D. Raha, Y. Qiao, and C. S. Hong, “Artificial intelligence framework for target oriented integrated sensing and communication in holographic mimo,” in NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.   IEEE, 2023, pp. 1–7.
  3. A. D. Raha, A. Adhikary, M. S. Munir, Y. Qiao, and C. S. Hong, “Segment anything model aided beam prediction for the millimeter wave communication,” in 2023 24st Asia-Pacific Network Operations and Management Symposium (APNOMS).   IEEE, 2023, pp. 113–118.
  4. A. D. Raha, M. S. Munir, A. Adhikary, Y. Qiao, and C. S. Hong, “Generative ai-driven semantic communication framework for nextg wireless network,” arXiv preprint arXiv:2310.09021, 2023.
  5. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  6. Y. Qiao, M. S. Munir, A. Adhikary, H. Q. Le, A. D. Raha, C. Zhang, and C. S. Hong, “Mp-fedcl: Multiprototype federated contrastive learning for edge intelligence,” IEEE Internet of Things journal, 2023.
  7. H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data: A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.
  8. Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, and C. S. Hong, “Cdfed: Contribution-based dynamic federated learning for managing system and statistical heterogeneity,” in NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.   IEEE, 2023.
  9. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine learning and systems, vol. 2, pp. 429–450, 2020.
  10. G. Zizzo, A. Rawat, M. Sinn, and B. Buesser, “Fat: Federated adversarial training,” arXiv preprint arXiv:2012.01791, 2020.
  11. J. Hong, H. Wang, Z. Wang, and J. Zhou, “Federated robustness propagation: Sharing adversarial robustness in federated learning,” arXiv preprint arXiv:2106.10196, vol. 1, 2021.
  12. L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and S. Y. Philip, “Privacy and robustness in federated learning: Attacks and defenses,” IEEE transactions on neural networks and learning systems, 2022.
  13. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  14. A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!” Advances in Neural Information Processing Systems, vol. 32, 2019.
  15. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.
  16. J. Zhang, B. Li, C. Chen, L. Lyu, S. Wu, S. Ding, and C. Wu, “Delving into the adversarial robustness of federated learning,” arXiv preprint arXiv:2302.09479, 2023.
  17. C. Chen, Y. Liu, X. Ma, and L. Lyu, “Calfat: Calibrated federated adversarial training with label skewness,” arXiv preprint arXiv:2205.14926, 2022.
  18. D. Shah, P. Dube, S. Chakraborty, and A. Verma, “Adversarial training in communication constrained federated learning,” arXiv preprint arXiv:2103.01319, 2021.
  19. Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, S. H. Hong, and C. S. Hong, “A framework for multi-prototype based federated learning: Towards the edge intelligence,” in 2023 International Conference on Information Networking (ICOIN).   IEEE, 2023, pp. 134–139.
  20. Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 713–10 722.
  21. Y. Qiao, H. Q. Le, and C. S. Hong, “Boosting federated learning convergence with prototype regularization,” arXiv preprint arXiv:2307.10575, 2023.
  22. J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu, “Federated learning with label distribution skew via logits calibration,” in International Conference on Machine Learning.   PMLR, 2022, pp. 26 311–26 329.
  23. A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning via logit adjustment,” arXiv preprint arXiv:2007.07314, 2020.
  24. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  25. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.
  26. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  28. X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang, and Z. Zhang, “Fedproc: Prototypical contrastive federated learning on non-iid data,” Future Generation Computer Systems, vol. 143, pp. 93–104, 2023.
  29. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  30. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Artificial intelligence safety and security.   Chapman and Hall/CRC, 2018, pp. 99–112.
  31. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee symposium on security and privacy (sp).   Ieee, 2017, pp. 39–57.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yu Qiao (563 papers)
  2. Apurba Adhikary (15 papers)
  3. Chaoning Zhang (66 papers)
  4. Choong Seon Hong (165 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.