Papers
Topics
Authors
Recent
2000 character limit reached

Over-smoothing Effect of Graph Convolutional Networks

Published 30 Jan 2022 in cs.LG | (2201.12830v2)

Abstract: Over-smoothing is a severe problem which limits the depth of Graph Convolutional Networks. This article gives a comprehensive analysis of the mechanism behind Graph Convolutional Networks and the over-smoothing effect. The article proposes an upper bound for the occurrence of over-smoothing, which offers insight into the key factors behind over-smoothing. The results presented in this article successfully explain the feasibility of several algorithms that alleviate over-smoothing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.