Papers
Topics
Authors
Recent
Search
2000 character limit reached

The fine line between dead neurons and sparsity in binarized spiking neural networks

Published 28 Jan 2022 in cs.NE, cs.LG, and q-bio.NC | (2201.11915v1)

Abstract: Spiking neural networks can compensate for quantization error by encoding information either in the temporal domain, or by processing discretized quantities in hidden states of higher precision. In theory, a wide dynamic range state-space enables multiple binarized inputs to be accumulated together, thus improving the representational capacity of individual neurons. This may be achieved by increasing the firing threshold, but make it too high and sparse spike activity turns into no spike emission. In this paper, we propose the use of `threshold annealing' as a warm-up method for firing thresholds. We show it enables the propagation of spikes across multiple layers where neurons would otherwise cease to fire, and in doing so, achieve highly competitive results on four diverse datasets, despite using binarized weights. Source code is available at https://github.com/jeshraghian/snn-tha/

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.