Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To Spike or Not to Spike, that is the Question (2407.19566v2)

Published 28 Jul 2024 in cs.ET and cs.NE

Abstract: Neuromorphic computing has recently gained momentum with the emergence of various neuromorphic processors. As the field advances, there is an increasing focus on developing training methods that can effectively leverage the unique properties of spiking neural networks (SNNs). SNNs emulate the temporal dynamics of biological neurons, making them particularly well-suited for real-time, event-driven processing. To fully harness the potential of SNNs across different neuromorphic platforms, effective training methodologies are essential. In SNNs, learning rules are based on neurons' spiking behavior, that is, if and when spikes are generated due to a neuron's membrane potential exceeding that neuron's spiking threshold, and this spike timing encodes vital information. However, the threshold is generally treated as a hyperparameter, and incorrect selection can lead to neurons that do not spike for large portions of the training process, hindering the effective rate of learning. This work focuses on the significance of learning neuron thresholds alongside weights in SNNs. Our results suggest that promoting threshold from a hyperparameter to a trainable parameter effectively addresses the issue of dead neurons during training. This leads to a more robust training algorithm, resulting in improved convergence, increased test accuracy, and a substantial reduction in the number of training epochs required to achieve viable accuracy on spatiotemporal datasets such as NMNIST, DVS128, and Spiking Heidelberg Digits (SHD), with up to 30% training speed-up and up to 2% higher accuracy on these datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com