Papers
Topics
Authors
Recent
Search
2000 character limit reached

ThreshNet: An Efficient DenseNet Using Threshold Mechanism to Reduce Connections

Published 9 Jan 2022 in cs.CV | (2201.03013v2)

Abstract: With the continuous development of neural networks for computer vision tasks, more and more network architectures have achieved outstanding success. As one of the most advanced neural network architectures, DenseNet shortcuts all feature maps to solve the model depth problem. Although this network architecture has excellent accuracy with low parameters, it requires an excessive inference time. To solve this problem, HarDNet reduces the connections between the feature maps, making the remaining connections resemble harmonic waves. However, this compression method may result in a decrease in the model accuracy and an increase in the parameters and model size. This network architecture may reduce the memory access time, but its overall performance can still be improved. Therefore, we propose a new network architecture, ThreshNet, using a threshold mechanism to further optimize the connection method. Different numbers of connections for different convolution layers are discarded to accelerate the inference of the network. The proposed network has been evaluated with image classification using CIFAR 10 and SVHN datasets under platforms of NVIDIA RTX 3050 and Raspberry Pi 4. The experimental results show that, compared with HarDNet68, GhostNet, MobileNetV2, ShuffleNet, and EfficientNet, the inference time of the proposed ThreshNet79 is 5%, 9%, 10%, 18%, and 20% faster, respectively. The number of parameters of ThreshNet95 is 55% less than that of HarDNet85. The new model compression and model acceleration methods can speed up the inference time, enabling network models to operate on mobile devices.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.