Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lightweight Residual Densely Connected Convolutional Neural Network (2001.00526v2)

Published 2 Jan 2020 in cs.CV and cs.LG

Abstract: Extremely efficient convolutional neural network architectures are one of the most important requirements for limited-resource devices (such as embedded and mobile devices). The computing power and memory size are two important constraints of these devices. Recently, some architectures have been proposed to overcome these limitations by considering specific hardware-software equipment. In this paper, the lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network. The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment by just reducing the number of parameters and computational operations while achieving a feasible accuracy. Extensive experimental results demonstrate that the proposed architecture is more efficient than the AlexNet and VGGNet in terms of model size, required parameters, and even accuracy. The proposed model has been evaluated on the ImageNet, MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. It achieves state-of-the-art results on Fashion MNIST dataset and reasonable results on the others. The obtained results show the superiority of the proposed method to efficient models such as the SqueezNet. It is also comparable with state-of-the-art efficient models such as CondenseNet and ShuffleNet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fahimeh Fooladgar (15 papers)
  2. Shohreh Kasaei (35 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.