Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Convolutional Neural Networks on Raspberry Pi for Image Classification (2204.00943v4)

Published 2 Apr 2022 in cs.CV

Abstract: With the good performance of deep learning algorithms in the field of computer vision (CV), the convolutional neural network (CNN) architecture has become a main backbone of the computer vision task. With the widespread use of mobile devices, neural network models based on platforms with low computing power are gradually being paid attention. However, due to the limitation of computing power, deep learning algorithms are usually not available on mobile devices. This paper proposes a lightweight convolutional neural network, TripleNet, which can operate easily on Raspberry Pi. Adopted from the concept of block connections in ThreshNet, the newly proposed network model compresses and accelerates the network model, reduces the amount of parameters of the network, and shortens the inference time of each image while ensuring the accuracy. Our proposed TripleNet and other state-of-the-art (SOTA) neural networks perform image classification experiments with the CIFAR-10 and SVHN datasets on Raspberry Pi. The experimental results show that, compared with GhostNet, MobileNet, ThreshNet, EfficientNet, and HarDNet, the inference time of TripleNet per image is shortened by 15%, 16%, 17%, 24%, and 30%, respectively. The detail codes of this work are available at https://github.com/RuiyangJu/TripleNet.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com