Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connection Reduction of DenseNet for Image Recognition (2208.01424v3)

Published 2 Aug 2022 in cs.CV

Abstract: Convolutional Neural Networks (CNN) increase depth by stacking convolutional layers, and deeper network models perform better in image recognition. Empirical research shows that simply stacking convolutional layers does not make the network train better, and skip connection (residual learning) can improve network model performance. For the image classification task, models with global densely connected architectures perform well in large datasets like ImageNet, but are not suitable for small datasets such as CIFAR-10 and SVHN. Different from dense connections, we propose two new algorithms to connect layers. Baseline is a densely connected network, and the networks connected by the two new algorithms are named ShortNet1 and ShortNet2 respectively. The experimental results of image classification on CIFAR-10 and SVHN show that ShortNet1 has a 5% lower test error rate and 25% faster inference time than Baseline. ShortNet2 speeds up inference time by 40% with less loss in test accuracy. Code and pre-trained models are available at https://github.com/RuiyangJu/Connection_Reduction.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com