Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Poisson PCA for matrix count data (2110.14420v1)

Published 27 Oct 2021 in math.ST and stat.TH

Abstract: We develop a dimension reduction framework for data consisting of matrices of counts. Our model is based on assuming the existence of a small amount of independent normal latent variables that drive the dependency structure of the observed data, and can be seen as the exact discrete analogue for a contaminated low-rank matrix normal model. We derive estimators for the model parameters and establish their root-$n$ consistency. An extension of a recent proposal from the literature is used to estimate the latent dimension of the model. Additionally, a sparsity-accommodating variant of the model is considered. The method is shown to surpass both its vectorization-based competitors and matrix methods assuming the continuity of the data distribution in analysing simulated data and real abundance data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube