Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Randomized Dimension Reduction on Massive Data

Published 13 Apr 2015 in stat.ML and q-bio.QM | (1504.03183v1)

Abstract: The scalability of statistical estimators is of increasing importance in modern applications. One approach to implementing scalable algorithms is to compress data into a low dimensional latent space using dimension reduction methods. In this paper we develop an approach for dimension reduction that exploits the assumption of low rank structure in high dimensional data to gain both computational and statistical advantages. We adapt recent randomized low-rank approximation algorithms to provide an efficient solution to principal component analysis (PCA), and we use this efficient solver to improve parameter estimation in large-scale linear mixed models (LMM) for association mapping in statistical and quantitative genomics. A key observation in this paper is that randomization serves a dual role, improving both computational and statistical performance by implicitly regularizing the covariance matrix estimate of the random effect in a LMM. These statistical and computational advantages are highlighted in our experiments on simulated data and large-scale genomic studies.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.