Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A parsimonious family of multivariate Poisson-lognormal distributions for clustering multivariate count data (2004.06857v1)

Published 15 Apr 2020 in stat.CO

Abstract: Multivariate count data are commonly encountered through high-throughput sequencing technologies in bioinformatics, text mining, or in sports analytics. Although the Poisson distribution seems a natural fit to these count data, its multivariate extension is computationally expensive.In most cases mutual independence among the variables is assumed, however this fails to take into account the correlation among the variables usually observed in the data. Recently, mixtures of multivariate Poisson-lognormal (MPLN) models have been used to analyze such multivariate count measurements with a dependence structure. In the MPLN model, each count is modeled using an independent Poisson distribution conditional on a latent multivariate Gaussian variable. Due to this hierarchical structure, the MPLN model can account for over-dispersion as opposed to the traditional Poisson distribution and allows for correlation between the variables. Rather than relying on a Monte Carlo-based estimation framework which is computationally inefficient, a fast variational-EM based framework is used here for parameter estimation. Further, a parsimonious family of mixtures of Poisson-lognormal distributions are proposed by decomposing the covariance matrix and imposing constraints on these decompositions. Utility of such models is shown using simulated and benchmark datasets.

Summary

We haven't generated a summary for this paper yet.