Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Computational Quantification of Protein-Ligand Interactions (2110.08163v1)

Published 15 Oct 2021 in quant-ph and physics.bio-ph

Abstract: We have demonstrated a prototypical hybrid classical and quantum computational workflow for the quantification of protein-ligand interactions. The workflow combines the Density Matrix Embedding Theory (DMET) embedding procedure with the Variational Quantum Eigensolver (VQE) approach for finding molecular electronic ground states. A series of $\beta$-secretase (BACE1) inhibitors is rank-ordered using binding energy differences calculated on the latest superconducting transmon (IBM) and trapped-ion (Honeywell) Noisy Intermediate Scale Quantum (NISQ) devices. This is the first application of real quantum computers to the calculation of protein-ligand binding energies. The results shed light on hardware and software requirements which would enable the application of NISQ algorithms in drug design.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube