Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Convolution for Structure-Based Virtual Screening (2507.09667v1)

Published 13 Jul 2025 in quant-ph

Abstract: Structure-based virtual screening (SBVS) is a key computational strategy for identifying potential drug candidates by estimating the binding free energies (delta G_bind) of protein-ligand complexes. The immense size of chemical libraries, combined with the need to account for protein and ligand conformations as well as ligand translations and rotations, makes these tasks computationally intensive on classical hardware. This study proposes a quantum convolutional neural network (QCNN) framework to estimate delta G_bind efficiently. Using the PDBbind v2020 dataset, we trained QCNN models with 9 and 12 qubits, with the core set designated as the test set. The best-performing model achieved a Pearson correlation coefficient of 0.694 on the test set. To assess robustness, we introduced quantum noise under two configurations. While noise increased the root mean square deviation, the Pearson correlation coefficient remained largely stable. These results demonstrate the feasibility and noise tolerance of QCNNs for high-throughput virtual screening and highlight the potential of quantum computing to accelerate drug discovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.