Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Novel algorithms and high-performance cloud computing enable efficient fully quantum mechanical protein-ligand scoring (2004.08725v1)

Published 18 Apr 2020 in physics.chem-ph and physics.comp-ph

Abstract: Ranking the binding of small molecules to protein receptors through physics-based computation remains challenging. Though inroads have been made using free energy methods, these fail when the underlying classical mechanical force fields are insufficient. In principle, a more accurate approach is provided by quantum mechanical density functional theory (DFT) scoring, but even with approximations, this has yet to become practical on drug discovery-relevant timescales and resources. Here, we describe how to overcome this barrier using algorithms for DFT calculations that scale on widely available cloud architectures, enabling full density functional theory, without approximations, to be applied to protein-ligand complexes with approximately 2500 atoms in tens of minutes. Applying this to a realistic example of 22 ligands binding to MCL1 reveals that density functional scoring outperforms classical free energy perturbation theory for this system. This raises the possibility of broadly applying fully quantum mechanical scoring to real-world drug discovery pipelines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.