Improved inequalities for the numerical radius via Cartesian decomposition
Abstract: We develop various lower bounds for the numerical radius $w(A)$ of a bounded linear operator $A$ defined on a complex Hilbert space, which improve the existing inequality $w2(A)\geq \frac{1}{4}|AA+AA^|$. In particular, for $r\geq 1$, we show that \begin{eqnarray*}\frac{1}{4}|AA+AA^| \leq\frac{1}{2} \left( \frac{1}{2}|\Re(A)+\Im(A)|{2r}+\frac{1}{2}|\Re(A)-\Im(A)|{2r}\right){\frac{1}{r}} \leq w{2}(A),\end{eqnarray*} where $\Re(A)$ and $\Im(A)$ are the real and imaginary parts of $A$, respectively. Furthermore, we obtain upper bounds for $w2(A)$ refining the well-known upper bound $w2(A)\leq \frac{1}{2} \left(w(A2)+|A|2\right)$. Separate complete characterizations for $w(A)=\frac{|A|}{2}$ and $w(A)=\frac{1}{2}\sqrt{|AA+AA^|}$ are also given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.