Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Development of inequality and characterization of equality conditions for the numerical radius (2105.09715v1)

Published 20 May 2021 in math.FA

Abstract: Let $A$ be a bounded linear operator on a complex Hilbert space and $\Re(A)$ ( $\Im(A)$ ) denote the real part (imaginary part) of A. Among other refinements of the lower bounds for the numerical radius of $A$, we prove that \begin{eqnarray*} w(A)&\geq &\frac{1}{2} \left |A \right| + \frac{ 1}{2} \mid |\Re(A)|-|\Im(A)|\mid,\,\,\mbox{and}\ w2(A)&\geq& \frac{1}{4} \left |AA+AA^ \right| + \frac{1}{2}\mid |\Re(A)|2-|\Im(A)|2 \mid, \end{eqnarray*} where $w(A)$ is the numerical radius of the operator $A$. We study the equality conditions for $w(A)=\frac{1}{2}\sqrt{|AA+AA^|}$ and prove that $w(A)=\frac{1}{2}\sqrt{|AA+AA^|} $ if and only if the numerical range of $A$ is a circular disk with center at the origin and radius $\frac{1}{2}\sqrt{|AA+AA^|} $. We also obtain upper bounds for the numerical radius of commutators of operators which improve on the existing ones.

Summary

We haven't generated a summary for this paper yet.