Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refinements of norm and numerical radius inequalities (2010.12750v1)

Published 24 Oct 2020 in math.FA

Abstract: Several refinements of norm and numerical radius inequalities of bounded linear operators on a complex Hilbert space are given. In particular, we show that if $A$ is a bounded linear operator on a complex Hilbert space, then $$ \frac{1}{4}|AA+AA^| \leq \frac{1}{8}\bigg( |A+A|2+|A-A^|2 +c2(A+A)+c2(A-A^)\bigg) \leq w2(A)$$ and \begin{eqnarray*} \frac{1}{2}|AA+AA^| - \frac{1}{4}\bigg|(A+A*)2 (A-A*)2 \bigg|{1/2} \leq w2(A) \leq \frac{1}{2}|AA+AA^|, \end{eqnarray*} %$$ \frac{1}{4}|AA+AA^| \leq \frac{1}{2}w2(A) + \frac{1}{8}\bigg|(A+A*)2 (A-A*)2 \bigg|{1/2}\leq w2(A),$$ where $|.|$, $w(.)$ and $c(.)$ are the operator norm, the numerical radius and the Crawford number, respectively. Further, we prove that if $A,D$ are bounded linear operators on a complex Hilbert space, then \begin{eqnarray*} |AD*| \leq \left| \int_01 \left( (1-t) \left(\frac{ |A|2+|D|2}{2}\right) +t|AD*|I \right)2dt \right|{1/2} \leq \frac{1}{2}\left| |A|2+|D|2 \right|, \end{eqnarray*} where $|A|=(A*A){1/2}$ and $|D|=(D*D){1/2}$. This is a refinement of well known inequality obtained by Bhatia and Kittaneh.

Summary

We haven't generated a summary for this paper yet.