Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Manifold Approximation and Projection (UMAP) and its Variants: Tutorial and Survey (2109.02508v1)

Published 25 Aug 2021 in cs.HC and cs.LG

Abstract: Uniform Manifold Approximation and Projection (UMAP) is one of the state-of-the-art methods for dimensionality reduction and data visualization. This is a tutorial and survey paper on UMAP and its variants. We start with UMAP algorithm where we explain probabilities of neighborhood in the input and embedding spaces, optimization of cost function, training algorithm, derivation of gradients, and supervised and semi-supervised embedding by UMAP. Then, we introduce the theory behind UMAP by algebraic topology and category theory. Then, we introduce UMAP as a neighbor embedding method and compare it with t-SNE and LargeVis algorithms. We discuss negative sampling and repulsive forces in UMAP's cost function. DensMAP is then explained for density-preserving embedding. We then introduce parametric UMAP for embedding by deep learning and progressive UMAP for streaming and out-of-sample data embedding.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com