Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Semi-supervised Image Classification with Grad-CAM Consistency (2108.13673v1)

Published 31 Aug 2021 in cs.CV

Abstract: Consistency training, which exploits both supervised and unsupervised learning with different augmentations on image, is an effective method of utilizing unlabeled data in semi-supervised learning (SSL) manner. Here, we present another version of the method with Grad-CAM consistency loss, so it can be utilized in training model with better generalization and adjustability. We show that our method improved the baseline ResNet model with at most 1.44 % and 0.31 $\pm$ 0.59 %p accuracy improvement on average with CIFAR-10 dataset. We conducted ablation study comparing to using only psuedo-label for consistency training. Also, we argue that our method can adjust in different environments when targeted to different units in the model. The code is available: https://github.com/gimme1dollar/gradcam-consistency-semi-sup.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.