Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Pruning Method Based on DenseNet Network for Image Classification (2108.12604v4)

Published 28 Aug 2021 in cs.CV

Abstract: Deep neural networks have made significant progress in the field of computer vision. Recent studies have shown that depth, width and shortcut connections of neural network architectures play a crucial role in their performance. One of the most advanced neural network architectures, DenseNet, has achieved excellent convergence rates through dense connections. However, it still has obvious shortcomings in the usage of amount of memory. In this paper, we introduce a new type of pruning tool, threshold, which refers to the principle of the threshold voltage in MOSFET. This work employs this method to connect blocks of different depths in different ways to reduce the usage of memory. It is denoted as ThresholdNet. We evaluate ThresholdNet and other different networks on datasets of CIFAR10. Experiments show that HarDNet is twice as fast as DenseNet, and on this basis, ThresholdNet is 10% faster and 10% lower error rate than HarDNet.

Citations (5)

Summary

We haven't generated a summary for this paper yet.