Risk-sensitive Optimization for Robust Quantum Controls (2104.01323v1)
Abstract: Highly accurate and robust control of quantum operations is vital for the realization of error-correctible quantum computation. In this paper, we show that the robustness of high-precision controls can be remarkably enhanced through sampling-based stochastic optimization of a risk-sensitive loss function. Following the stochastic gradient-descent direction of this loss function, the optimization is guided to penalize poor-performance uncertainty samples in a tunable manner. We propose two algorithms, which are termed as the risk-sensitive GRAPE and the adaptive risk-sensitive GRAPE. Their effectiveness is demonstrated by numerical simulations, which is shown to be able to achieve high control robustness while maintaining high fidelity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.