Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Binary Quantum Control Optimization with Uncertain Hamiltonians (2401.10120v2)

Published 18 Jan 2024 in quant-ph and math.OC

Abstract: Optimizing the controls of quantum systems plays a crucial role in advancing quantum technologies. The time-varying noises in quantum systems and the widespread use of inhomogeneous quantum ensembles raise the need for high-quality quantum controls under uncertainties. In this paper, we consider a stochastic discrete optimization formulation of a binary optimal quantum control problem involving Hamiltonians with predictable uncertainties. We propose a sample-based reformulation that optimizes both risk-neutral and risk-averse measurements of control policies, and solve these with two gradient-based algorithms using sum-up-rounding approaches. Furthermore, we discuss the differentiability of the objective function and prove upper bounds of the gaps between the optimal solutions to binary control problems and their continuous relaxations. We conduct numerical studies on various sized problem instances based of two applications of quantum pulse optimization; we evaluate different strategies to mitigate the impact of uncertainties in quantum systems. We demonstrate that the controls of our stochastic optimization model achieve significantly higher quality and robustness compared to the controls of a deterministic model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. Training Schrödinger’s cat: quantum optimal control. The European Physical Journal D, 69, 2015. doi:10.1140/epjd/e2015-60464-1. URL https://doi.org/10.1140/epjd/e2015-60464-1.
  2. J Werschnik and E K U Gross. Quantum optimal control theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 40(18):R175, sep 2007. doi:10.1088/0953-4075/40/18/R01. URL https://dx.doi.org/10.1088/0953-4075/40/18/R01.
  3. Domenico d’Alessandro. Introduction to Quantum Control and Dynamics. Chapman and Hall/CRC, 2021. doi:10.1201/9781003051268. URL https://doi.org/10.1201/9781003051268.
  4. Improving solid-state NMR dipolar recoupling by optimal control. Journal of the American Chemical Society, 126(33):10202–10203, 2004. doi:10.1021/ja048786e. URL https://doi.org/10.1021/ja048786e.
  5. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance, 172(2):296–305, 2005. doi:10.1016/j.jmr.2004.11.004. URL http://dx.doi.org/10.1016/j.jmr.2004.11.004.
  6. Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. The Journal of Chemical Physics, 128(18):05B609, 2008. doi:10.1063/1.2903458. URL http://dx.doi.org/10.1063/1.2903458.
  7. Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. Journal of Magnetic Resonance, 163(1):8–15, 2003. doi:10.1016/s1090-7807(03)00153-8. URL http://dx.doi.org/10.1016/s1090-7807(03)00153-8.
  8. Wavepacket dancing: Achieving chemical selectivity by shaping light pulses. Chemical Physics, 139(1):201–220, 1989. doi:10.1016/0301-0104(89)90012-8. URL https://www.sciencedirect.com/science/article/pii/0301010489900128.
  9. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Physical Review A, 37:4950–4964, Jun 1988. doi:10.1103/PhysRevA.37.4950. URL https://link.aps.org/doi/10.1103/PhysRevA.37.4950.
  10. Various methods of optimizing control pulses for quantum systems with decoherence. Quantum Information Processing, 15(5):1937–1953, 2016. doi:10.1007/s11128-016-1242-y. URL http://dx.doi.org/10.1007/s11128-016-1242-y.
  11. Simple pulses for elimination of leakage in weakly nonlinear qubits. Physical Review Letters, 103(11), 2009. doi:10.1103/physrevlett.103.110501. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.110501.
  12. Partial compilation of variational algorithms for noisy intermediate-scale quantum machines. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 266–278, 2019. doi:10.1145/3352460.3358313. URL http://dx.doi.org/10.1145/3352460.3358313.
  13. Speedup for quantum optimal control from automatic differentiation based on graphics processing units. Physical Review A, 95(4):042318, 2017. doi:10.1103/PhysRevA.95.042318. URL http://dx.doi.org/10.1103/PhysRevA.95.042318.
  14. Quantum computing by an optimal control algorithm for unitary transformations. Physical Review Letters, 89:188301, 2002. doi:10.1103/physrevlett.89.188301. URL http://dx.doi.org/10.1103/physrevlett.89.188301.
  15. Optimal control theory for unitary transformations. Physical Review A, 68:062308, 2003. doi:10.1103/PhysRevA.68.062308. URL http://dx.doi.org/10.1103/PhysRevA.68.062308.
  16. Optimal control of a leaking qubit. Physical Review B, 79(6):060507, 2009. doi:10.1103/PhysRevB.79.060507. URL http://dx.doi.org/10.1103/PhysRevB.79.060507.
  17. Optimal protocols in quantum annealing and quantum approximate optimization algorithm problems. Physical Review Letters, 126(7), feb 2021a. doi:10.1103/physrevlett.126.070505. URL https://doi.org/10.1103%2Fphysrevlett.126.070505.
  18. Behavior of analog quantum algorithms. https://arXiv.org/abs/2107.01218, 2021b.
  19. Binary control pulse optimization for quantum systems. Quantum, 7:892, January 2023a. doi:10.22331/q-2023-01-04-892. URL https://doi.org/10.22331/q-2023-01-04-892.
  20. Switching time optimization for binary quantum optimal control. https://doi.org/10.48550/arXiv.2308.03132, 2023b.
  21. Bang-bang control as a design principle for classical and quantum optimization algorithms. https://arXiv.org/abs/1812.02746, 2018.
  22. Quantum annealing: A journey through digitalization, control, and hybrid quantum variational schemes, 2019. URL https://arXiv.org/abs/1906.08948.
  23. Optimal control for quantum optimization of closed and open systems. Physical Review Applied, 16(5), nov 2021. doi:10.1103/PhysRevApplied.16.054023. URL https://doi.org/10.1103%2FPhysRevApplied.16.054023.
  24. Krylov-subspace approach for the efficient control of quantum many-body dynamics. Physical Review A, 103(2), Feb 2021. doi:10.1103/PhysRevA.103.023107. URL http://dx.doi.org/10.1103/PhysRevA.103.023107.
  25. Optimal control technique for many-body quantum dynamics. Physical Review Letters, 106:190501, May 2011. doi:10.1103/PhysRevLett.106.190501. URL https://link.aps.org/doi/10.1103/PhysRevLett.106.190501.
  26. Chopped random-basis quantum optimization. Physical Review A, 84(2):022326, 2011. doi:10.1103/PhysRevA.84.022326. URL http://dx.doi.org/10.1103/PhysRevA.84.022326.
  27. Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates. Physical Review A, 98(2):022119, 2018. doi:10.1103/PhysRevA.98.022119. URL http://dx.doi.org/10.1103/PhysRevA.98.022119.
  28. Evolutionary algorithms for hard quantum control. Physical Review A, 90(3):032310, 2014. doi:10.1103/PhysRevA.90.032310. URL http://dx.doi.org/10.1103/PhysRevA.90.032310.
  29. Reinforcement learning in different phases of quantum control. Physical Review X, 8(3):031086, 2018. doi:10.1103/physrevx.8.031086. URL http://dx.doi.org/10.1103/physrevx.8.031086.
  30. Universal quantum control through deep reinforcement learning. npj Quantum Information, 5(1):1–8, 2019. doi:10.1038/s41534-019-0141-3. URL http://dx.doi.org/10.1038/s41534-019-0141-3.
  31. Model-free quantum control with reinforcement learning. Physical Review X, 12(1):011059, 2022. doi:10.1103/PhysRevX.12.011059. URL https://link.aps.org/doi/10.1103/PhysRevX.12.011059.
  32. Fidelity-based probabilistic Q-learning for control of quantum systems. IEEE Transactions on Neural Networks and Learning Systems, 25(5):920–933, 2013. doi:10.1109/tnnls.2013.2283574. URL http://dx.doi.org/10.1109/tnnls.2013.2283574.
  33. When does reinforcement learning stand out in quantum control? A comparative study on state preparation. npj Quantum Information, 5(1):85, 2019. doi:10.1038/s41534-019-0201-8. URL http://dx.doi.org/10.1038/s41534-019-0201-8.
  34. Binary optimal control of single-flux-quantum pulse sequences. SIAM Journal on Control and Optimization, 60(6):3217–3236, November 2022. doi:10.1137/21m142808x. URL http://dx.doi.org/10.1137/21m142808x.
  35. Optimal control of uncertain quantum systems. Physical Review A, 42(3):1065, 1990. doi:10.1103/PhysRevA.42.1065. URL https://link.aps.org/doi/10.1103/PhysRevA.42.1065.
  36. Optimized pulses for the control of uncertain qubits. Physical Review A, 85(5):052313, 2012. doi:10.1103/PhysRevA.85.052313. URL http://dx.doi.org/10.1103/PhysRevA.85.052313.
  37. Robust quantum optimal control with trajectory optimization. Physical Review Applied, 17(1):014036, 2022. doi:10.1103/PhysRevApplied.17.014036. URL http://dx.doi.org/10.1103/PhysRevApplied.17.014036.
  38. Arbitrary quantum control of qubits in the presence of universal noise. New Journal of Physics, 15(9):095004, 2013. doi:10.1088/1367-2630/15/9/095004. URL http://dx.doi.org/10.1088/1367-2630/15/9/095004.
  39. Robust quantum control: Analysis & synthesis via averaging. https://arXiv.org/abs/2208.14193, 2022.
  40. Sampling-based learning control of inhomogeneous quantum ensembles. Physical Review A, 89(2):023402, 2014a. doi:10.1103/PhysRevA.89.023402. URL http://dx.doi.org/10.1103/PhysRevA.89.023402.
  41. Control of inhomogeneous quantum ensembles. Physical Review A, 73:030302, Mar 2006. doi:10.1103/PhysRevA.73.030302. URL https://link.aps.org/doi/10.1103/PhysRevA.73.030302.
  42. Fourier decompositions and pulse sequence design algorithms for nuclear magnetic resonance in inhomogeneous fields. The Journal of Chemical Physics, 125(19):194111, 2006. doi:10.1063/1.2390715. URL http://dx.doi.org/10.1063/1.2390715.
  43. Control of inhomogeneous ensembles on the bloch sphere. Physical Review A, 86:022315, Aug 2012. doi:10.1103/PhysRevA.86.022315. URL https://link.aps.org/doi/10.1103/PhysRevA.86.022315.
  44. Control of inhomogeneous atomic ensembles of hyperfine qudits. Physical Review A, 85:022302, Feb 2012. doi:10.1103/PhysRevA.85.022302. URL https://link.aps.org/doi/10.1103/PhysRevA.85.022302.
  45. Qubit control noise spectroscopy with optimal suppression of dephasing. Physical Review A, 106(2):022425, 2022. doi:10.1103/PhysRevA.106.022425. URL http://dx.doi.org/10.1103/PhysRevA.106.022425.
  46. A multidimensional pseudospectral method for optimal control of quantum ensembles. The Journal of Chemical Physics, 134(4):044128, 2011. doi:10.1063/1.3541253. URL http://dx.doi.org/10.1063/1.3541253.
  47. Learning robust and high-precision quantum controls. Physical Review A, 99(4):042327, 2019. doi:10.1103/PhysRevA.99.042327. URL http://dx.doi.org/10.1103/PhysRevA.99.042327.
  48. Janus H. Wesenberg. Designing robust gate implementations for quantum-information processing. Physical Review A, 69:042323, Apr 2004. doi:10.1103/PhysRevA.69.042323. URL https://link.aps.org/doi/10.1103/PhysRevA.69.042323.
  49. Robust control of quantum gates via sequential convex programming. Physical Review A, 88(5):052326, 2013. doi:10.1103/PhysRevA.88.052326. URL http://dx.doi.org/10.1103/PhysRevA.88.052326.
  50. The integer approximation error in mixed-integer optimal control. Mathematical Programming, 133(1):1–23, 2012. doi:10.1007/s10107-010-0405-3. URL http://dx.doi.org/10.1007/s10107-010-0405-3.
  51. Quantum Error Correction. Cambridge University Press, September 2013. doi:10.1017/cbo9781139034807. URL http://dx.doi.org/10.1017/cbo9781139034807.
  52. The Theory of Open Quantum Systems. Oxford University PressOxford, January 2007. doi:10.1093/acprof:oso/9780199213900.001.0001. URL http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001.
  53. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), May 2019. ISSN 1931-9401. doi:10.1063/1.5088164. URL http://dx.doi.org/10.1063/1.5088164.
  54. Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial & Applied Mathematics, 2014. doi:10.1137/1.9781611973433. URL https://epubs.siam.org/doi/book/10.1137/1.9781611973433.
  55. Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization, pages 270–294. INFORMS, 2008. doi:10.1287/educ.1080.0052. URL http://dx.doi.org/10.1287/educ.1080.0052.
  56. Optimization of conditional value-at-risk. Journal of Risk, 2:21–42, 2000. doi:10.21314/JOR.2000.038. URL https://www.risk.net/journal-risk/2161159/optimization-conditional-value-risk.
  57. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7):1443–1471, 2002. doi:10.1016/s0378-4266(02)00271-6. URL http://dx.doi.org/10.1016/s0378-4266(02)00271-6.
  58. Georg Ch Pflug. Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk, pages 272–281. Springer, 2000. doi:10.1007/978-1-4757-3150-7_15. URL http://dx.doi.org/10.1007/978-1-4757-3150-7_15.
  59. On the global minimization of the value-at-risk. Optimization Methods and Software, 19(5):611–631, 2004. doi:10.1080/10556780410001704911. URL http://dx.doi.org/10.1080/10556780410001704911.
  60. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995. doi:10.1137/0916069. URL https://doi.org/10.1137/0916069.
  61. Adam: A method for stochastic optimization. https://arXiv.org/abs/1412.6980, 2014.
  62. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, 1997. doi:10.1145/279232.279236. URL https://doi.org/10.1145/279232.279236.
  63. Combinatorial integral approximation. Mathematical Methods of Operations Research, 73(3):363–380, 2011. doi:10.1007/s00186-011-0355-4. URL http://dx.doi.org/10.1007/s00186-011-0355-4.
  64. On mixed-integer optimal control with constrained total variation of the integer control. Computational Optimization and Applications, 78(2):575–623, 2021. doi:10.1007/s10589-020-00244-5. URL https://doi.org/10.1007/s10589-020-00244-5.
  65. Convergence of sum-up rounding schemes for cloaking problems governed by the Helmholtz equation. Computational Optimization and Applications, 79(1):193–221, 2021. doi:10.1007/s10589-020-00262-3. URL http://dx.doi.org/10.1007/s10589-020-00262-3.
  66. Multidimensional sum-up rounding for elliptic control systems. SIAM Journal on Numerical Analysis, 58(6):3427–3447, 2020. doi:10.1137/19M1260682. URL http://dx.doi.org/10.1137/19m1260682.
  67. Wikipedia. https://en.wikipedia.org/wiki/Almost_everywhere, 2023. [Online; accessed 13-January-2024].
  68. Code and results: Quantum control optimization with uncertain Hamiltonians. https://github.com/xinyufei/Stochastic-quantum-control, 2023c.
  69. 40 years of boxplots. The American Statistician, 2011. URL https://api.semanticscholar.org/CorpusID:36975036.
  70. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79(1):291, 2007. doi:10.1103/RevModPhys.79.291. URL https://link.aps.org/doi/10.1103/RevModPhys.79.291.
  71. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4(1):014008, 2018. doi:10.1088/2058-9565/aad3e4. URL http://dx.doi.org/10.1088/2058-9565/aad3e4.
  72. Qubit architecture with high coherence and fast tunable coupling. Physical Review Letters, 113(22):220502, 2014b. doi:10.1103/PhysRevLett.113.220502. URL https://link.aps.org/doi/10.1103/PhysRevLett.113.220502.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube