Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New class of sixth-order nonhomogeneous $p(x)$-Kirchhoff problems with sign-changing weight functions (2104.01012v1)

Published 2 Apr 2021 in math.AP

Abstract: We prove the existence of multiple solutions for the following sixth-order $p(x)$-Kirchhoff-type problem: $-M(\int_\Omega \frac{1}{p(x)}|\nabla \Delta u|{p(x)}dx)\Delta3_{p(x)} u = \lambda f(x)|u|{q(x)-2}u + g(x)|u|{r(x)-2}u + h(x) \ \ \mbox{on} \ \Omega$ and $ \ u=\Delta u=\Delta2 u=0 \ \ \mbox{on} \ \partial\Omega,$ where $\Omega \subset \mathbb{R}N$ is a smooth bounded domain, $N > 3$, $\Delta_{p(x)}3u = \operatorname{div}\Big(\Delta(|\nabla \Delta u|{p(x)-2}\nabla \Delta u)\Big)$ is the $p(x)$-triharmonic operator, $p,q,r \in C(\overline\Omega)$, $1< p(x) < \frac N3$ for all $x\in \overline\Omega$, $M(s) = a - bs\gamma$, $a,b,\gamma>0$, $\lambda>0$, $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a nonnegative continuous function while $f,h : \Omega \times \mathbb{R} \to \mathbb{R}$ are sign-changing continuous functions in $\Omega$. To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order $p(x)$-Kirchhoff type problems with sign changing Kirchhoff functions.

Summary

We haven't generated a summary for this paper yet.