Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and multiplicity results for a new $p(x)$-Kirchhoff problem (1908.08369v1)

Published 22 Aug 2019 in math.AP

Abstract: We study the existence and multiplicity results for the following nonlocal $p(x)$-Kirchhoff problem: \begin{equation} \label{10} \begin{cases} -\left(a-b\int_\Omega\frac{1}{p(x)}| \nabla u| {p(x)}dx\right)div(|\nabla u| {p(x)-2}\nabla u)=\lambda |u| {p(x)-2}u+g(x,u) \mbox{ in } \Omega, \ u=0,\mbox{ on } \partial\Omega, \end{cases} \end{equation} where $a\geq b > 0$ are constants, $\Omega\subset \mathbb{R}N$ is a bounded smooth domain, $p\in C(\overline{\Omega})$ with $N>p(x)>1$, $\lambda$ is a real parameter and $g$ is a continuous function. The analysis developed in this paper proposes an approach based on the idea of considering a new nonlocal term which presents interesting difficulties.

Summary

We haven't generated a summary for this paper yet.