Papers
Topics
Authors
Recent
2000 character limit reached

Multitype $Λ$-coalescents (2103.14638v2)

Published 26 Mar 2021 in math.PR

Abstract: Consider a multitype coalescent process in which each block has a colour in ${1,\ldots,d}$. Individual blocks may change colour, and some number of blocks of various colours may merge to form a new block of some colour. We show that if the law of a multitype coalescent process is invariant under permutations of blocks of the same colour, has consistent Markovian projections, and has asychronous mergers, then it is a multitype $\Lambda$-coalescent: a process in which single blocks may change colour, two blocks of like colour may merge to form a single block of that colour, or large mergers across various colours happen at rates governed by a $d$-tuple of measures on the unit cube $[0,1]d$. We go on to identify when such processes come down from infinity. Our framework generalises Pitman's celebrated classification theorem for singletype coalescent processes, and provides a unifying setting for numerous examples that have appeared in the literature including the seed-bank model, the island model and the coalescent structure of continuous-state branching processes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.