Multitype $Λ$-coalescents (2103.14638v2)
Abstract: Consider a multitype coalescent process in which each block has a colour in ${1,\ldots,d}$. Individual blocks may change colour, and some number of blocks of various colours may merge to form a new block of some colour. We show that if the law of a multitype coalescent process is invariant under permutations of blocks of the same colour, has consistent Markovian projections, and has asychronous mergers, then it is a multitype $\Lambda$-coalescent: a process in which single blocks may change colour, two blocks of like colour may merge to form a single block of that colour, or large mergers across various colours happen at rates governed by a $d$-tuple of measures on the unit cube $[0,1]d$. We go on to identify when such processes come down from infinity. Our framework generalises Pitman's celebrated classification theorem for singletype coalescent processes, and provides a unifying setting for numerous examples that have appeared in the literature including the seed-bank model, the island model and the coalescent structure of continuous-state branching processes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.