Papers
Topics
Authors
Recent
2000 character limit reached

Rigid representations of the multiplicative coalescent with linear deletion (1610.00891v2)

Published 4 Oct 2016 in math.PR

Abstract: We introduce the multiplicative coalescent with linear deletion, a continuous-time Markov process describing the evolution of a collection of blocks. Any two blocks of sizes $x$ and $y$ merge at rate $xy$, and any block of size $x$ is deleted with rate $\lambda x$ (where $\lambda\geq 0$ is a fixed parameter). This process arises for example in connection with a variety of random-graph models which exhibit self-organised criticality. We focus on results describing states of the process in terms of collections of excursion lengths of random functions. For the case $\lambda=0$ (the coalescent without deletion) we revisit and generalise previous works by authors including Aldous, Limic, Armendariz, Uribe Bravo, and Broutin and Marckert, in which the coalescence is related to a "tilt" of a random function, which increases with time; for $\lambda>0$ we find a novel representation in which this tilt is complemented by a "shift" mechanism which produces the deletion of blocks. We describe and illustrate other representations which, like the tilt-and-shift representation, are "rigid", in the sense that the coalescent process is constructed as a projection of some process which has all of its randomness in its initial state. We explain some applications of these constructions to models including mean-field forest-fire and frozen-percolation processes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.