Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DHASP: Differentiable Hearing Aid Speech Processing (2103.08569v1)

Published 15 Mar 2021 in cs.SD and cs.LG

Abstract: Hearing aids are expected to improve speech intelligibility for listeners with hearing impairment. An appropriate amplification fitting tuned for the listener's hearing disability is critical for good performance. The developments of most prescriptive fittings are based on data collected in subjective listening experiments, which are usually expensive and time-consuming. In this paper, we explore an alternative approach to finding the optimal fitting by introducing a hearing aid speech processing framework, in which the fitting is optimised in an automated way using an intelligibility objective function based on the HASPI physiological auditory model. The framework is fully differentiable, thus can employ the back-propagation algorithm for efficient, data-driven optimisation. Our initial objective experiments show promising results for noise-free speech amplification, where the automatically optimised processors outperform one of the well recognised hearing aid prescriptions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.