Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Hidden Representations from a DNN-based Speech Recogniser for Speech Intelligibility Prediction in Hearing-impaired Listeners (2204.04287v2)

Published 8 Apr 2022 in eess.AS, cs.SD, and q-bio.QM

Abstract: An accurate objective speech intelligibility prediction algorithms is of great interest for many applications such as speech enhancement for hearing aids. Most algorithms measures the signal-to-noise ratios or correlations between the acoustic features of clean reference signals and degraded signals. However, these hand-picked acoustic features are usually not explicitly correlated with recognition. Meanwhile, deep neural network (DNN) based automatic speech recogniser (ASR) is approaching human performance in some speech recognition tasks. This work leverages the hidden representations from DNN-based ASR as features for speech intelligibility prediction in hearing-impaired listeners. The experiments based on a hearing aid intelligibility database show that the proposed method could make better prediction than a widely used short-time objective intelligibility (STOI) based binaural measure.

Citations (11)

Summary

We haven't generated a summary for this paper yet.