Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss (2103.00928v2)

Published 1 Mar 2021 in cs.RO

Abstract: Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains, or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This paper tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. The Linear Inverted Pendulum Model and Central Pattern Generator concepts are used to develop a closed-loop walk engine, which is then combined with a reinforcement learning module. This module learns to regulate the walk engine parameters adaptively, and generates residuals to adjust the robot's target joint positions (residual physics). Additionally, we propose a proximal symmetry loss function to increase the sample efficiency of the Proximal Policy Optimization algorithm, by leveraging model symmetries and the trust region concept. The effectiveness of the proposed framework was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in unforeseen circumstances, displaying human-like locomotion skills, even in the presence of noise and external pushes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com