Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Generic and Dynamic Locomotion of Humanoids Across Discrete Terrains (2405.17227v2)

Published 27 May 2024 in cs.RO

Abstract: This paper addresses the challenge of terrain-adaptive dynamic locomotion in humanoid robots, a problem traditionally tackled by optimization-based methods or reinforcement learning (RL). Optimization-based methods, such as model-predictive control, excel in finding optimal reaction forces and achieving agile locomotion, especially in quadruped, but struggle with the nonlinear hybrid dynamics of legged systems and the real-time computation of step location, timing, and reaction forces. Conversely, RL-based methods show promise in navigating dynamic and rough terrains but are limited by their extensive data requirements. We introduce a novel locomotion architecture that integrates a neural network policy, trained through RL in simplified environments, with a state-of-the-art motion controller combining model-predictive control (MPC) and whole-body impulse control (WBIC). The policy efficiently learns high-level locomotion strategies, such as gait selection and step positioning, without the need for full dynamics simulations. This control architecture enables humanoid robots to dynamically navigate discrete terrains, making strategic locomotion decisions (e.g., walking, jumping, and leaping) based on ground height maps. Our results demonstrate that this integrated control architecture achieves dynamic locomotion with significantly fewer training samples than conventional RL-based methods and can be transferred to different humanoid platforms without additional training. The control architecture has been extensively tested in dynamic simulations, accomplishing terrain height-based dynamic locomotion for three different robots.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear inverted pendulum mode: A simple modeling for a biped walking pattern generation,” in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1.   IEEE, 2001, pp. 239–246.
  2. Y. Zhao and L. Sentis, “A three dimensional foot placement planner for locomotion in very rough terrains,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).   IEEE, 2012, pp. 726–733.
  3. M. Vukobratović and B. Borovac, “Zero-moment point—thirty five years of its life,” International journal of humanoid robotics, vol. 1, no. 01, pp. 157–173, 2004.
  4. T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models,” The international journal of robotics research, vol. 31, no. 9, pp. 1094–1113, 2012.
  5. J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal walking control based on divergent component of motion,” Ieee transactions on robotics, vol. 31, no. 2, pp. 355–368, 2015.
  6. A. Goswami, “Foot rotation indicator (fri) point: A new gait planning tool to evaluate postural stability of biped robots,” in Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C), vol. 1.   IEEE, 1999, pp. 47–52.
  7. M.-J. Kim, M. Kim, D. Lim, E. Sung, and J. Park, “Disturbance adapting walking pattern generation using capture point feedback considering com control performance,” Journal of Intelligent & Robotic Systems, vol. 108, no. 2, p. 22, 2023.
  8. S. Caron, A. Kheddar, and O. Tempier, “Stair climbing stabilization of the hrp-4 humanoid robot using whole-body admittance control,” in 2019 International conference on robotics and automation (ICRA).   IEEE, 2019, pp. 277–283.
  9. M. Johnson, B. Shrewsbury, S. Bertrand, D. Calvert, T. Wu, D. Duran, D. Stephen, N. Mertins, J. Carff, W. Rifenburgh et al., “Team ihmc’s lessons learned from the darpa robotics challenge: Finding data in the rubble,” Journal of Field Robotics, vol. 34, no. 2, pp. 241–261, 2017.
  10. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the mit cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1–9.
  11. O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini, “Mpc-based controller with terrain insight for dynamic legged locomotion,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 2436–2442.
  12. S.-H. Lee and A. Goswami, “Reaction mass pendulum (rmp): An explicit model for centroidal angular momentum of humanoid robots,” in Proceedings 2007 IEEE international conference on robotics and automation.   IEEE, 2007, pp. 4667–4672.
  13. G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the mit cheetah,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 4102–4109.
  14. E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse, P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole body model predictive control with a memory of motion: Experiments on a torque-controlled talos,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8202–8208.
  15. D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control,” 2019.
  16. G. García, R. Griffin, and J. Pratt, “Mpc-based locomotion control of bipedal robots with line-feet contact using centroidal dynamics,” in 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids).   IEEE, 2021, pp. 276–282.
  17. K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and feature-complete differentiable physics for articulated rigid bodies with contact,” arXiv preprint arXiv:2103.16021, 2021.
  18. S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop, M. Schwager, and Z. Manchester, “Fast contact-implicit model predictive control,” IEEE Transactions on Robotics, 2024.
  19. S. H. Jeon, S. Kim, and D. Kim, “Online optimal landing control of the mit mini cheetah,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 178–184.
  20. G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-implicit mpc: Controlling diverse quadruped motions without pre-planned contact modes or trajectories,” arXiv preprint arXiv:2312.08961, 2023.
  21. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, p. eabc5986, 2020.
  22. X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine, “Learning agile robotic locomotion skills by imitating animals,” 2020.
  23. Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement learning for robust parameterized locomotion control of bipedal robots,” 2021.
  24. S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath, “Learning torque control for quadrupedal locomotion,” in 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids).   IEEE, 2023, pp. 1–8.
  25. D. Kim, G. Berseth, M. Schwartz, and J. Park, “Torque-based deep reinforcement learning for task-and-robot agnostic learning on bipedal robots using sim-to-real transfer,” arXiv preprint arXiv:2304.09434, 2023.
  26. J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for quadruped robots,” 2018.
  27. J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair traversal via sim-to-real reinforcement learning,” 2021.
  28. I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath, “Real-world humanoid locomotion with reinforcement learning,” 2023.
  29. N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” in 5th Annual Conference on Robot Learning, 2021. [Online]. Available: https://openreview.net/forum?id=wK2fDDJ5VcF
  30. X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with legged robots,” arXiv preprint arXiv:2309.14341, 2023.
  31. Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao, “Robot parkour learning,” in Conference on Robot Learning (CoRL), 2023.
  32. D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour: Learning agile navigation for quadrupedal robots,” 2023.
  33. G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae Kim, and P. Agrawal, “Learning to jump from pixels,” in 5th Annual Conference on Robot Learning, 2021. [Online]. Available: https://openreview.net/forum?id=R4E8wTUtxdl
  34. W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan, and T. Zhang, “Visual-locomotion: Learning to walk on complex terrains with vision,” in Proceedings of the 5th Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol. 164.   PMLR, 08–11 Nov 2022, pp. 1291–1302. [Online]. Available: https://proceedings.mlr.press/v164/yu22a.html
  35. S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis, “Rloc: Terrain-aware legged locomotion using reinforcement learning and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2908–2927, 2022.
  36. X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu, B. Babich, and A. Garg, “Learning a contact-adaptive controller for robust, efficient legged locomotion,” in Proceedings of the 2020 Conference on Robot Learning, ser. Proceedings of Machine Learning Research, vol. 155.   PMLR, 16–18 Nov 2021, pp. 883–894. [Online]. Available: https://proceedings.mlr.press/v155/da21a.html
  37. V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning,” 2020.
  38. Z. Xie, X. Da, B. Babich, A. Garg, and M. v. de Panne, “Glide: Generalizable quadrupedal locomotion in diverse environments with a centroidal model,” in International Workshop on the Algorithmic Foundations of Robotics.   Springer, 2022, pp. 523–539.
  39. Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots, “CAJun: Continuous adaptive jumping using a learned centroidal controller,” in 7th Annual Conference on Robot Learning, 2023. [Online]. Available: https://openreview.net/forum?id=MnANx01rV2w
  40. J. L. Lanciego, N. Luquin, and J. A. Obeso, “Functional neuroanatomy of the basal ganglia,” Cold Spring Harbor perspectives in medicine, vol. 2, no. 12, 2012.
  41. M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit humanoid robot: Design, motion planning, and control for acrobatic behaviors,” in 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids).   IEEE, 2021, pp. 1–8.
  42. F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking control - a unifying approach to model-based planning and reinforcement-learning for versatile and robust locomotion,” ArXiv, vol. abs/2309.15462, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:263152143
  43. Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning with mixed-integer convex optimization,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 1–6.
  44. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
  45. Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors through online trajectory optimization,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2012, pp. 4906–4913.
  46. A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory optimization for legged systems through phase-based end-effector parameterization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.
  47. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  48. A. Tang, T. Hiraoka, N. Hiraoka, F. Shi, K. Kawaharazuka, K. Kojima, K. Okada, and M. Inaba, “Humanmimic: Learning natural locomotion and transitions for humanoid robot via wasserstein adversarial imitation,” 2023.
  49. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.
  50. Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne, “Learning locomotion skills for cassie: Iterative design and sim-to-real,” in Proceedings of the Conference on Robot Learning, ser. Proceedings of Machine Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100.   PMLR, 30 Oct–01 Nov 2020, pp. 317–329. [Online]. Available: https://proceedings.mlr.press/v100/xie20a.html
  51. J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all common bipedal gaits via periodic reward composition,” 2021.
  52. R. Batke, F. Yu, J. Dao, J. Hurst, R. L. Hatton, A. Fern, and K. Green, “Optimizing bipedal maneuvers of single rigid-body models for reinforcement learning,” 2022.
  53. H. Duan, B. Pandit, M. S. Gadde, B. van Marum, J. Dao, C. Kim, and A. Fern, “Learning vision-based bipedal locomotion for challenging terrain,” 2023.
  54. Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps: Curriculum-driven learning of stepping stone skills,” in Proc. ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2020.
  55. R. P. Singh, M. Benallegue, M. Morisawa, R. Cisneros, and F. Kanehiro, “Learning bipedal walking on planned footsteps for humanoid robots,” 2022.
  56. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  57. D. Kim, S. J. Jorgensen, J. Lee, J. Ahn, J. Luo, and L. Sentis, “Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 936–956, 2020. [Online]. Available: https://doi.org/10.1177/0278364920918014
  58. Y. Sim and J. Ramos, “Tello leg: The study of design principles and metrics for dynamic humanoid robots,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9318–9325, 2022.
  59. N. Rudin, “Isaac gym environments for legged robots,” https://github.com/leggedrobotics/legged_gym, 2021.
  60. X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,” ACM Trans. Graph., vol. 37, no. 4, pp. 143:1–143:14, Jul. 2018. [Online]. Available: http://doi.acm.org/10.1145/3197517.3201311
  61. Y. Fuchioka, Z. Xie, and M. Van de Panne, “Opt-mimic: Imitation of optimized trajectories for dynamic quadruped behaviors,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 5092–5098.
  62. L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan, and S. Levine, “Learning and adapting agile locomotion skills by transferring experience,” 2023.
  63. D. Kang, J. Cheng, M. Zamora, F. Zargarbashi, and S. Coros, “Rl+ model-based control: Using on-demand optimal control to learn versatile legged locomotion,” arXiv preprint arXiv:2305.17842, 2023.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com