Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Separating ABPs and Some Structured Formulas in the Non-Commutative Setting (2103.00864v1)

Published 1 Mar 2021 in cs.CC

Abstract: The motivating question for this work is a long standing open problem, posed by Nisan (1991), regarding the relative powers of algebraic branching programs (ABPs) and formulas in the non-commutative setting. Even though the general question continues to remain open, we make some progress towards its resolution. To that effect, we generalise the notion of ordered polynomials in the non-commutative setting (defined by \Hrubes, Wigderson and Yehudayoff (2011)) to define abecedarian polynomials and models that naturally compute them. Our main contribution is a possible new approach towards separating formulas and ABPs in the non-commutative setting, via lower bounds against abecedarian formulas. In particular, we show the following. There is an explicit n-variate degree d abecedarian polynomial $f_{n,d}(x)$ such that 1. $f_{n, d}(x)$ can be computed by an abecedarian ABP of size O(nd); 2. any abecedarian formula computing $f_{n, \log n}(x)$ must have size that is super-polynomial in n. We also show that a super-polynomial lower bound against abecedarian formulas for $f_{\log n, n}(x)$ would separate the powers of formulas and ABPs in the non-commutative setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.