Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Determinants vs. Algebraic Branching Programs (2308.04599v1)

Published 8 Aug 2023 in cs.CC

Abstract: We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d5s)$. Moreover, we show that for $\textit{most}$ homogeneous polynomials, the width of the resulting homogeneous ABP is just $s-1$ and the size is at most $O(ds)$. Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP complexity are within a constant factor of each other and hence, a super-linear lower bound for ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal complexity; this relates two open problems of great interest in algebraic complexity. As of now, super-linear lower bounds for ABPs are known only for polynomials of growing degree, and for determinantal complexity the best lower bounds are larger than the number of variables only by a constant factor. While determinantal complexity and ABP complexity are classically known to be polynomially equivalent, the standard transformation from the former to the latter incurs a polynomial blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs implies a super-linear lower bound on determinantal complexity. In particular, a size preserving transformation from determinantal complexity to ABPs does not appear to have been known prior to this work, even for constant degree polynomials.

Citations (1)

Summary

We haven't generated a summary for this paper yet.