Papers
Topics
Authors
Recent
2000 character limit reached

Learning-Based Phase Compression and Quantization for Massive MIMO CSI Feedback with Magnitude-Aided Information

Published 28 Feb 2021 in cs.IT, eess.SP, and math.IT | (2103.00432v4)

Abstract: Massive MIMO wireless FDD systems are often confronted by the challenge to efficiently obtain downlink channel state information (CSI). Previous works have demonstrated the potential in CSI encoding and recovery by take advantage of uplink/downlink reciprocity between their CSI magnitudes. However, such a framework separately encodes CSI phase and magnitude. To improve CSI encoding, we propose a learning-based framework based on limited CSI feedback and magnitude-aided information. Moving beyond previous works, our proposed framework with a modified loss function enables end-to-end learning to jointly optimize the CSI magnitude and phase recovery performance. Simulations show that the framework outperforms alternate approaches for phase recovery over overall CSI recovery in indoor and outdoor scenarios.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.