Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Partial MIMO CSI Feedback by Exploiting Channel Temporal Correlation (2201.02790v1)

Published 8 Jan 2022 in cs.IT, eess.SP, and math.IT

Abstract: Accurate estimation of DL CSI is required to achieve high spectrum and energy efficiency in massive MIMO systems. Previous works have developed learning-based CSI feedback framework within FDD systems for efficient CSI encoding and recovery with demonstrated benefits. However, downlink pilots for CSI estimation by receiving terminals may occupy excessively large number of resource elements for massive number of antennas and compromise spectrum efficiency. To overcome this problem, we propose a new learning-based feedback architecture for efficient encoding of partial CSI feedback of interleaved non-overlapped antenna subarrays by exploiting CSI temporal correlation. For ease of encoding, we further design an IFFT approach to decouple partial CSI of antenna subarrays and to preserve partial CSI sparsity. Our results show superior performance in indoor/outdoor scenarios by the proposed model for CSI recovery at significantly reduced computation power and storage needs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.