Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Adversarial Networks for Multi-Domain Text Classification (2102.10176v1)

Published 19 Feb 2021 in cs.LG and cs.CL

Abstract: In this paper, we propose conditional adversarial networks (CANs), a framework that explores the relationship between the shared features and the label predictions to impose more discriminability to the shared features, for multi-domain text classification (MDTC). The proposed CAN introduces a conditional domain discriminator to model the domain variance in both shared feature representations and class-aware information simultaneously and adopts entropy conditioning to guarantee the transferability of the shared features. We provide theoretical analysis for the CAN framework, showing that CAN's objective is equivalent to minimizing the total divergence among multiple joint distributions of shared features and label predictions. Therefore, CAN is a theoretically sound adversarial network that discriminates over multiple distributions. Evaluation results on two MDTC benchmarks show that CAN outperforms prior methods. Further experiments demonstrate that CAN has a good ability to generalize learned knowledge to unseen domains.

Citations (18)

Summary

We haven't generated a summary for this paper yet.