Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mixup Regularized Adversarial Networks for Multi-Domain Text Classification

Published 31 Jan 2021 in cs.CL and cs.LG | (2102.00467v1)

Abstract: Using the shared-private paradigm and adversarial training has significantly improved the performances of multi-domain text classification (MDTC) models. However, there are two issues for the existing methods. First, instances from the multiple domains are not sufficient for domain-invariant feature extraction. Second, aligning on the marginal distributions may lead to fatal mismatching. In this paper, we propose a mixup regularized adversarial network (MRAN) to address these two issues. More specifically, the domain and category mixup regularizations are introduced to enrich the intrinsic features in the shared latent space and enforce consistent predictions in-between training instances such that the learned features can be more domain-invariant and discriminative. We conduct experiments on two benchmarks: The Amazon review dataset and the FDU-MTL dataset. Our approach on these two datasets yields average accuracies of 87.64\% and 89.0\% respectively, outperforming all relevant baselines.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.