Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy (2102.07800v1)

Published 15 Feb 2021 in stat.ML, cs.AI, and cs.LG

Abstract: Motivated by modern applications, such as online advertisement and recommender systems, we study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous, and the learner is allowed to select $k$ arms and observe all or some of the rewards for the chosen arms. We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy for selecting multiple arms. We show that our algorithm has a regret guarantee of $O(k\sqrt{(A-k+1)T \log (|\mathcal{F}|T)})$, where $A$ is the total number of arms and $\mathcal{F}$ is the class containing the regression function, while only requiring $\tilde{O}(A)$ computation per time step. In the extreme setting, where the total number of arms can be in the millions, we propose a practically-motivated arm hierarchy model that induces a certain structure in mean rewards to ensure statistical and computational efficiency. The hierarchical structure allows for an exponential reduction in the number of relevant arms for each context, thus resulting in a regret guarantee of $O(k\sqrt{(\log A-k+1)T \log (|\mathcal{F}|T)})$. Finally, we implement our algorithm using a hierarchical linear function class and show superior performance with respect to well-known benchmarks on simulated bandit feedback experiments using extreme multi-label classification datasets. On a dataset with three million arms, our reduction scheme has an average inference time of only 7.9 milliseconds, which is a 100x improvement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Rajat Sen (29 papers)
  2. Alexander Rakhlin (100 papers)
  3. Lexing Ying (159 papers)
  4. Rahul Kidambi (21 papers)
  5. Dean Foster (28 papers)
  6. Daniel Hill (10 papers)
  7. Inderjit Dhillon (25 papers)
Citations (11)