Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably Efficient High-Dimensional Bandit Learning with Batched Feedbacks (2311.13180v2)

Published 22 Nov 2023 in stat.ML and cs.LG

Abstract: We study high-dimensional multi-armed contextual bandits with batched feedback where the $T$ steps of online interactions are divided into $L$ batches. In specific, each batch collects data according to a policy that depends on previous batches and the rewards are revealed only at the end of the batch. Such a feedback structure is popular in applications such as personalized medicine and online advertisement, where the online data often do not arrive in a fully serial manner. We consider high-dimensional and linear settings where the reward function of the bandit model admits either a sparse or low-rank structure and ask how small a number of batches are needed for a comparable performance with fully dynamic data in which $L = T$. For these settings, we design a provably sample-efficient algorithm which achieves a $ \mathcal{\tilde O}(s_02 \log2 T)$ regret in the sparse case and $ \mathcal{\tilde O} ( r 2 \log2 T)$ regret in the low-rank case, using only $L = \mathcal{O}( \log T)$ batches. Here $s_0$ and $r$ are the sparsity and rank of the reward parameter in sparse and low-rank cases, respectively, and $ \mathcal{\tilde O}(\cdot)$ omits logarithmic factors involving the feature dimensions. In other words, our algorithm achieves regret bounds comparable to those in fully sequential setting with only $\mathcal{O}( \log T)$ batches. Our algorithm features a novel batch allocation method that adjusts the batch sizes according to the estimation accuracy within each batch and cumulative regret. Furthermore, we also conduct experiments with synthetic and real-world data to validate our theory.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jianqing Fan (165 papers)
  2. Zhaoran Wang (164 papers)
  3. Zhuoran Yang (155 papers)
  4. Chenlu Ye (14 papers)
Citations (1)