Papers
Topics
Authors
Recent
Search
2000 character limit reached

Super-klust: Another Way of Piecewise Linear Classification

Published 2 Feb 2021 in cs.LG | (2102.01571v1)

Abstract: With our previous study, the Super-k algorithm, we have introduced a novel way of piecewise-linear classification. While working on the Super-k algorithm, we have found that there is a similar, and simpler way to explain for obtaining a piecewise-linear classifier based on Voronoi tessellations. Replacing the multidimensional voxelization and expectation-maximization stages of the algorithm with a distance-based clustering algorithm, preferably k-means, works as well as the prior approach. Since we are replacing the voxelization with the clustering, we have found it meaningful to name the modified algorithm, with respect to Super-k, as Supervised k Clusters or in short Super-klust. Similar to the Super-k algorithm, the Super-klust algorithm covers data with a labeled Voronoi tessellation, and uses resulting tessellation for classification. According to the experimental results, the Super-klust algorithm has similar performance characteristics with the Super-k algorithm.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.