Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-k: A Piecewise Linear Classifier Based on Voronoi Tessellations (2012.15492v3)

Published 31 Dec 2020 in cs.LG

Abstract: Voronoi tessellations are used to partition the Euclidean space into polyhedral regions, which are called Voronoi cells. Labeling the Voronoi cells with the class information, we can map any classification problem into a Voronoi tessellation. In this way, the classification problem changes into a query of just finding the enclosing Voronoi cell. In order to accomplish this task, we have developed a new algorithm which generates a labeled Voronoi tessellation that partitions the training data into polyhedral regions and obtains interclass boundaries as an indirect result. It is called Supervised k-Voxels or in short Super-k. We are introducing Super-k as a foundational new algorithm and opening the possibility of a new family of algorithms. In this paper, it is shown via comparisons on certain datasets that the Super-k algorithm has the potential of providing comparable performance of the well-known SVM family of algorithms with less complexity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.