Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Support Vector Machine and YOLO for a Mobile Food Grading System (2101.01418v1)

Published 5 Jan 2021 in cs.CV, cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: Food quality and safety are of great concern to society since it is an essential guarantee not only for human health but also for social development, and stability. Ensuring food quality and safety is a complex process. All food processing stages should be considered, from cultivating, harvesting and storage to preparation and consumption. Grading is one of the essential processes to control food quality. This paper proposed a mobile visual-based system to evaluate food grading. Specifically, the proposed system acquires images of bananas when they are on moving conveyors. A two-layer image processing system based on machine learning is used to grade bananas, and these two layers are allocated on edge devices and cloud servers, respectively. Support Vector Machine (SVM) is the first layer to classify bananas based on an extracted feature vector composed of color and texture features. Then, the a You Only Look Once (YOLO) v3 model further locating the peel's defected area and determining if the inputs belong to the mid-ripened or well-ripened class. According to experimental results, the first layer's performance achieved an accuracy of 98.5% while the accuracy of the second layer is 85.7%, and the overall accuracy is 96.4%.

Citations (38)

Summary

We haven't generated a summary for this paper yet.